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Reconstructing Monte Carlo Errors as a Blue-noise in Screen Space
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Figure 1: Our method reconstructs the rendered images such that their errors due to Monte Carlo is a blue-noise in screen space. Compared
to BNDS, it produces a more pleasing noise of the same variance, thus improving the visual fidelity of the renderings.

Abstract
We present a novel method that reconstructs the Monte Carlo errors of renderings as a blue-noise in screen space. To this
end, we conform the statistic result of per-pixel integration to a precomputed blue-noise mask. Thanks to the property of blue-
noise, more visual fidelity is achieved through renderings after the reconstruction. The method has two key features. First, its
realization is fast and straightforward. Second, it produces stable blue-noise-error renderings regardless of the correlation of
the integrands. The preliminary results present robust blue-noise spectra with promising visual improvements in the renderings.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Since Georgiev and Fajardo pioneered the research of blue-noise
correlation of per-pixel errors in renderings [GF16], this goal has
been a long-standing challenge for recent studies. Inspired by digi-
tal halftoning, they used a blue-noise mask to shift the sampling se-
quence (Blue-noise Dithered Sampling, a.k.a. BNDS), i.e. using a
precomputed screen-space blue-noise as the first sample, such that
the rendering errors is as well a screen-space blue-noise at 1 sample
per pixel (SPP). Heitz et al. further introduced a sampler to address
the restriction of dimensions and sample counts [HBO∗19].

Nevertheless, as pointed out by Heitz and Belcour, correlation-
preserving integrands are the key to the effectiveness of BNDS
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[HB19]. In other words, BNDS is prone to fail beyond simple
scenes (e.g. smooth area lights, low-varying scenes, and for the de-
tails, please see the supplemental material). They proposed a poste-
riori method based on the temporal buffers which approximates the
radiant distribution of the integrands and procedurally updates the
scrambling seed to obtain stable blue-noise errors in more compli-
cated scenes. Despite the computational cost, this method has as-
cendency over the former two methods. It works very well for real-
time applications like video games with ray-tracing algorithms.
Still, one major drawback is that the claim of a fixed sample count
prevents it from offline rendering, where the progressive sample
counts and the blue-noise errors are both expected by an artist ren-
dering a static frame.

In this paper, we present a novel solution to respond to this chal-
lenge. We start the research directly from the statistic result of
the integrations. Instead of manipulating the sampling sequences,
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we conform the Monte Carlo (MC) errors to a precomputed blue-
noise mask. To efficiently evaluate the expected values and vari-
ances of the pixels, we utilize the neighboring pixels based on a
carefully designed weighting function. We adopt a dynamic kernel
size, such that the reconstructed renderings converge identically to
the ground-truth results.

2. Method

The crux of distributing the MC errors as a blue-noise lies in the es-
timation of the histogram of the per-pixel integrands – if one sam-
ples directly the inverse Cumulative Distribution Functions (iCDF)
of the integrands using screen-space blue-noise, blue-noise errors
are granted. However, in the context of static frame rendering or
progressive rendering, the per-pixel integrands are unobservable
until the frame has been rendered. As a consequence, our moti-
vation all revolves around the errors of the rendered result.

If the expected value E(Pi, j) and the variance Var(Pi, j) of the
integrand of a pixel Pi, j of an s-dimensional irradiance spectrum
is known in advance, we can normalize a precomputed uniform
screen-space blue-noise X ∼ U [0,1]s, such that the reconstructed
pixel P̃i, j has blue-noise-featured value

P̃i, j =
X−E(X)√

Var(X)
·
√

Var(Pi, j)+E(Pi, j), (1)

where E(X) = 1
2 and Var(X) = 1

12 for uniform distributions are
well-known. This is because the Fourier spectrumF(E(Pi, j)) of the
noise-free E(Pi, j) is relatively flat, and the remainder contributes to
the blue-noise spectrum.

To efficiently capture the expected value and variance from the
neighboring pixels, we adopt a weighting function

f (p) =
1
k
·Gσ(r) ·w(p,q) (2)

with Edge-Avoiding weight function w proposed by Dammertz et
al. [DSHL10], pixel position q, neighboring pixel position p, and
distance of the two pixel r. k denotes the normalization factor

k = ∑Gσ(r) ·w(p,q) (3)

and Gσ is the Gaussian kernel with standard deviation σ

Gσ(r) =
1√

2πσ2
· exp

(
− r2

2σ2

)
. (4)

The parameter σ plays a vital role. If it is chosen statically, the
renderings won’t converge to the ground-truth, because the recon-
struction kernel over-blurs the rendered results. To make sure that it
converges simultaneously with the MC errors, we make the param-
eter choice similar to photon mapping. First, assuming the expected
value or variance at pixel q is y(q), we expand Y (p) = y(p) ·w(p,q)
into Taylor series around q

Y (p) = Y (q)+
∞
∑
n=1

cn

n!
· (p−q)n. (5)

The filtered result of y(q) is thus

ỹ(q)=
1
k
·∑Gσ(r)·Y (p)=

1
k
·∑Gσ(r)·

(
Y (q)+

∞
∑
n=1

cn

n!
· (p−q)n

)

= y(q)+
1
k
·
∞
∑
n=1

c2nσ
2n

(n−1)!!
= y(q)+O(σ2), (6)

where n!! is the double factorial of n. Due to the fact that the
convergence rate of quasi-MC w.r.t. sample count N is (close to)
O
(

N−1
)

[Caf98], given an initial σ0, we let

σ =
1√
N
· σ0, (7)

such that O(σ) = O
(

N−1
)

, and that the reconstructed images,
along with the MC results, converge to the ground-truth at the same
rate.

3. Results and Conclusion

Fig. 1 presents the rendering result (using σ0 = 64) of our method
and comparison against BNDS. With the application of our method,
promising blue-noise spectrum is produced, which is absent in
BNDS.

Compared to priori methods [GF16, HBO∗19], our method ro-
bustly achieves high visual fidelity in complicated scenes contain-
ing highly decorrelated integrands like participating medium and
caustics paths, as well as allowing random sample counts and
dimensionalities. It neither intervenes the sampling and integra-
tion process nor postulates any specific sampling sequence, which
doesn’t affect the convergence of the renderings. Furthermore, it
can serve as a post-process of the renderer with a lower engineering
cost compared to the existing posteriori method [HB19], provided
with the effectiveness in progressive renderers and static frame ren-
dering.
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